On the minimum distance graph of an extended Preparata code
نویسندگان
چکیده
The minimum distance graph of an extended Preparata code P (m) has vertices corresponding to codewords and edges corresponding to pairs of codewords that are distance 6 apart. The clique structure of this graph is investigated and it is established that the minimum distance graphs of two extended Preparata codes are isomorphic if and only if the codes are equivalent.
منابع مشابه
A Family of Antipodal Distance-Regular Graphs Related to the Classical Preparata Codes
A new family of distance-regular graphs is constructed. They are antipodal 2 -fold covers of the complete graph on 2 vertices. The automorphism groups are determined, and the extended Preparata codes are reconstructed using walks on these graphs. There are connections to other interesting structures: the graphs are equivalent to certain generalized Hadamard matrices; and their underlying 3-clas...
متن کاملA Family of Antipodal Distance-Regular Graphs Related to the Classical Preparata Codes
A new family of distance-regular graphs is constructed. They are antipodal 22t−1-fold covers of the complete graph on 22t vertices. The automorphism groups are determined, and the extended Preparata codes are reconstructed using walks on these graphs. There are connections to other interesting structures: the graphs are equivalent to certain generalized Hadamard matrices; and their underlying 3...
متن کامل4 - Linearity of Kerdock , Preparata , Goethals and Related Codes ∗
Certain notorious nonlinear binary codes contain more codewords than any known linear code. These include the codes constructed by Nordstrom-Robinson , Kerdock, Preparata, Goethals, and Delsarte-Goethals . It is shown here that all these codes can be very simply constructed as binary images under the Gray map of linear codes over 4, the integers mod 4 (although this requires a slight modificati...
متن کاملOn the Apparent Duality of the Kerdock and Preparata Codes
The Kerdock and extended Preparata codes are something of an enigma in coding theory since they are both Hamming-distance invariant and have weight enumerators that are MacWilliams duals just as if they were dual linear codes. In this paper, we explain, by constructing in a natural way a Preparata-like code PL from the Kerdock code K, why the existence of a distance-invariant code with weight d...
متن کاملOn Components of Preparata Codes
The paper considers the interrelation between i-components of an arbitrary Preparata-like code P and i-components of a perfect code C containing P . It is shown that each i-component of P can uniquely be completed to an i-component of C by adding a certain number of special codewords of C. It is shown that the set of vertices of P in a characteristic graph of an arbitrary i-component of C forms...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Des. Codes Cryptography
دوره 57 شماره
صفحات -
تاریخ انتشار 2010